
Multitasking Across Industry Projects:
A Replication Study

Karina Kohl
karina.kohl@edu.pucrs.br

School of Technology, PUCRS
Brazil

Bogdan Vasilescu
vasilescu@cmu.edu

Carnegie Mellon University
USA

Rafael Prikladnicki
rafael.prikladnicki@pucrs.br
School of Technology, PUCRS

Brazil

ABSTRACT
Background: Multitasking is usual in software development. It is
the ability to stop working on a task, switch to another, and return
eventually to the first one, as needed or as scheduled. Multitask-
ing, however, comes at a cognitive cost: frequent context-switches
can lead to distraction, sub-standard work, and even greater stress.
Aims: This paper reports a replication experiment where we gath-
ered data on a group of developers from a software development
company from industry on a large collection of projects stored
in GitLab repositories. Method: We reused the developed models
and methods from the original study for measuring the rate and
breadth of a developers’ context-switching behavior, and we study
how context-switching affects their productivity. We applied semi-
structured interviews, replacing the original survey, to some of
the developers to understand the reasons for and perceptions of
multitasking. Results: We found out that industry developers multi-
task as much as OSS developers focusing more (on fewer projects),
and working more repetitively from one day to the next is asso-
ciated with higher productivity, but there is no effect for higher
multitasking. Some commons reasons make them multitask: depen-
dencies, personal interests, and social relationships. Conclusions:
Short context change, less than three minutes, did not impact re-
sults from industry developers; however, more than that, it brings
a feeling of left the previous tasks behind. So, it is proportional to
how much context is switched: as bigger the context and bigger the
interruption, it is worst to come back.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in col-

laborative and social computing; • Software and its engineer-
ing→ Software configurationmanagement and version con-
trol systems.
KEYWORDS

Software Development, Multitasking, Interruptions, Productivity,
GitHub, GitLab

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHASE 2020, May 24, 2020, Seoul, South Korea
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

ACM Reference Format:
Karina Kohl, Bogdan Vasilescu, and Rafael Prikladnicki. 2018. Multitasking
Across Industry Projects: A Replication Study. In CHASE 2020: International
Workshop on Cooperative and Human Aspects of Software Engineering, May
24, 2020, Seoul, South Korea. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Multitasking is the ability to stop working on a task, switch to
another, and return eventually to the first one, as needed or as
scheduled. The goal is to optimize human resource allocation, while
reprioritizing tasks dynamically [8]. When done well, or at least in a
disciplined way, multitasking can yield dividends [1]. If a task in the
queue has a higher priority than the current one, switching them
can improve performance. However, multitasking comes at a cost
though [3]. Humans, programmers included, have a certain, limited
amount of cognitive flexibility, the mental ability to switch from
thinking about one concept to thinking about another. Limitations
apply to the number of concepts we can juggle, as well as to the
difficulty in switching between them. As we can imagine, reaching
our innate limitations can result in decreased performance on all
tasks and perhaps even diminished quality. It is unknown how
far multitasking can be pushed safely, although some anecdotal
evidence is available [11].

Vasilescu et al.[11] say that software developers have long been
pushing the limits on multitasking because of the innate modular-
ity of the development process and the independence of module
processing (e.g., one can code while tests are in execution). They
realized that in open-source software, developers also commonly
contribute to multiple projects at the same time, bridging different
communities. With the advent of social coding tools like GitHub,
this has intensified. It is not uncommon to find prolific developers
contributing code to 5-10 GitHub projects in the same week. Also,
contributing to as many GitHub projects as possible is an accom-
plishment, valued by peers and employers alike. There are various
reasons why developers are more prolific on GitHub compared to
other platforms. The features and usability provided by GitHub play
a big role. So, with so many drivers for multitasking, it is easy to see
how one could cross the limits from safe, productive multitasking
into an overloaded mode, where code output falls, and bugs start to
multiply. The question becomes, where are those limits, and what
are their determinants?

Through analysis of longitudinal data, Vasilescu et al. [11] in-
vestigated how productivity (i.e., outputs produced per unit time)
of prolific GitHub programmers is determined by the number of
projects they work on, howmuch they focus on each (relative to the
others) and, how diverse the projects they contribute to are in terms
of programming languages. Notably, the very platform (GitHub)

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CHASE 2020, May 24, 2020, Seoul, South Korea Kohl and Vasilescu, et al.

that has introduced this multi-project multitasking phenomenon
also gives all the tools we need to understand when programmers
are at risk to approach their limits because of it.

However, software developersworking in the industry, frequently
also need to contribute to different projects and repositories to have
their tasks done. More than that, they have other factors that force
them to multitask and switch between different contexts: project
meetings, support to other developers and, tasks blocked due to
some impediment, for example. Considering this panorama, we
identify an opportunity to compare how multitasking differently
impacts social developers at GitHub and tech industry developers.

This paper presents a conceptual replication from Vasilescu et
al. [11] where we reused the study design and experimental steps
provided by them. However, we modified the subject pool: instead
of the analysis of the multitasking behavior of developers contribut-
ing to Open Source projects using GitHub data, the replication
analyzed developers working full time in a technology company
using anonymized data from their GitLab plataform. We also varied
one aspect of the conditions of the experiment: instead of a survey
with prolific developers, we performed semi-structured interviews
with few developers of the company studied.

Replications play a crucial role in Empirical Software Engineer-
ing by allowing the community to build knowledge about which
results or observations hold under which conditions. Therefore, not
only can a replication that produces similar results as the original
experiment is viewed as successful, but a replication that produces
results different from those of the original experiment can also
be considered as successful. A replication produces different re-
sults is useful because it provides insight to help the community
understand why the results were different. Gomez et al [7] argue
that experimentation helps to build a reliable base of knowledge,
reducing uncertainty about theories, methods, tools, etc. Several
replications need to run to strengthen the evidence.

The paper is organized as follows. Section 2 summarizes infor-
mation about the original study. Section 3 summarizes information
about the replication study, and Section 4 presents the results of
the replication study. Section 5 discusses and compares the results
from original study and their implications. Section 6 discusses the
future research agenda. Section 7 presents the identified threats to
validity, and Section 8 concludes the paper.

2 INFORMATION ABOUT THE ORIGINAL
STUDY

This study is a replication from Vasilescu et al. [11], so to frame it,
we followed a similar approach from the original. In this section,
we briefly summarize the information about the original study and,
detailed information can be consulted in the original paper. First,
they seek a deeper understanding of multitasking and its effects
on software developers in their daily routines in industry. Second,
having identified the critical multitasking and focus switching ef-
fects on programmer productivity, they proceed to investigate how
these dimensions interact and which trade-offs between them exist.

2.1 Dataset
The original study used a GitHub dataset that contains information
on prolific developers with active contribution history. The dataset

comprises contents of all commits authored by 1,255 developers
across 58,092 public repositories accessible on GitHub at the time
of mining. Developers in the most active three-quartiles (by the
total count of active days) were invited for the user survey. Also,
the study conceptualizes as a Project, repositories that are grouped
when owned by the same GitHub user or having precisely the
same name into sets of repositories, once they observed that in
some cases, software projects are organized into multiple separate
repositories on GitHub.

2.2 Multi-project Multitasking Productivity
The original study presents a model for quantitative analysis, to
investigate the relationship between outputs produced per unit
time (as a proxy for productivity) and a multitude of factors relating
to multitasking and focus switching. The authors stated that the
time interval to consider it is an important question when studying
multitasking and focus switching. During a more extended period, a
developer may experience many focus switches without necessarily
also “juggling” many tasks over a shorter interval. The modeling to
the interplay between focus switching at two temporal resolutions,
daily and weekly, and using different dimensions.

The first dimension is Projects Per Day,, where multitasking ac-
tivity is measured using the number of different projects contributed
to that day. Contributions are measured by commits. It represents
a lower bound on the number of switches per day: a developer
contributing to k projects in one day has to switch focus at least
k times that day. At the coarsest temporal resolution (week), it is
used the average number of projects per day (AvдProjectsPerDay)
as an aggregate measure of multitasking (inactive days excluded).
AvдProjectsPerDay captures the distinction between developers
who, over the course of a week, tend to work on projects sequen-
tially day-to-day, and thosewho interleave contributions tomultiple
projects each day, i.e., multitask.

The second dimension is Weekly Focus, that is useful to distin-
guish how evenly developers divide their attention among their
projects. This differentiation from projects per day is important
because it has been found that more narrowly focused developers
have less cognitive burden, resulting in higher productivity and
quality [9, 13].

So, the uncertainty in a developer’s focus switching behavior in
a given week, SFocus is defined using the Teachman/Shannon en-
tropy index, a commonly used diversity measure in many scientific
disciplines [5][2][13]. This measure is defined as

SFocus = −

N∑
i=1

pi loд2pi (1)

where pi is the fraction of the developer’s commits this week, in
project i, and N is the total number of projects this week. SFocus
ranges between 0 when a developer contributes to a single project
that week, and loд2N , when a developer contributes equally (i.e.,
pi= 1/N) to all N projects [11].

Similarly, a developer’s language entropy SLanдuaдe is measured,
defined analogously over the L different programming languages

Multitasking Across Industry Projects:
A Replication Study CHASE 2020, May 24, 2020, Seoul, South Korea

of the files touched that week:

SLanдuaдe = −

L∑
i=1

pi loд2pi (2)

SLanдuaдe is a proxy for the overall complexity of one’s contribu-
tions to different projects: when writing code in multiple program-
ming languages, in addition to switching focus between different
projects (which involves restoring project specific contexts), one
also must switch focus between different languages (which may
involve different skills)

The third dimension isDay-to-Day Focus or, SSwitch , and it can
be seen as a measure of the repetitiveness of one’s focus switches
from one day to the next: the lower the value, the less repetitive
one’s day-to-day behavior is. The original study considered focus
switching as a Markov process where the next state is entirely
determined by the current one, and the diversity of a developer’s
day-to-day focus switches is measured using Markov entropy, and
it defines the measure as:

SSwitch = −

N∑
i=1

[
pi

∑
j ∈πi

p(j |i)loд2pi (j |i)

]
(3)

Where πi is the set of outgoing neighbors of node; p(j |i) is the
conditional probability that the developer switches focus from i to
j

3 INFORMATION ABOUT THE REPLICATION
Instead of the analysis of the development activity of GitHub devel-
opers, we analyzed the development activity of industry developers
from a company in Brazil using their GitLab data. We combined: (1)
an analysis of repository data, to quantitatively examine the effects
of multitasking and focus switching on productivity; and (2) we
used semi-structured interviews to get qualitative insight into the
developers’ perceptions of multitasking, focus switching, and their
effects.

3.1 Research Questions
The two research questions that guide this study are similar to the
original ones, except by, we used data from GitLab in the replication.
They follow below:

RQ1. What are the trends of, reasons for, and effects of multitasking
and focus switching on developer productivity in GitLab?

RQ2. Are there limits on multitasking (and what are they) before
productivity is impacted?

3.2 Dataset
We used a GitLab dataset which considered projects created from
2017 to 2018 and commits on those project from January 1st , 2018 to
March 20th , 2019. Once we were in a controlled industrial environ-
ment, we considered all the developers that did at least one commit
during the period. Multiple aliases used by a single developer were
resolved by similarity. The dataset contains details about the date,
size (files added/removed), and contents of 157,658 commits au-
thored by 1,213 developers across 282 projects and 2,453 private

repositories accessible on GitLab at the time of mining. Commit data
was obtained using the GitLab APIs through Python scripts. The
languages of source code files were also obtained thought GitLab
APIs. Also, we interviewed ten developers from the company.

3.3 Semi-Structured Interviews
Instead of a user survey, we conducted semi-structured interviews
to get qualitative insight into the developers’ perceptions of multi-
tasking, focus switching, and their effects. Semi-structured inter-
views are a combination of structured and unstructured interviews
[10]. Such interviews combine specific questions (to bring forth
the foreseen information), and open-ended questions (to elicit un-
expected types of information). We interviewed ten developers
from the company that we analyzed the GitLab data through the
following questions:

• How much multitasking do you do in a day? Min/max (per-
ception);

• How much do you think it would be ideal? In general: positive
or negative? Why? ;

• From your perspective, what are the main reasons for multi-
tasking? ;

• How do you plan work across multiple projects if at all? ;
• Which switches, if any, could be avoided or differently sched-
uled if needed? ;

• Why cross-project interruptions happen?; What are typical
triggers for switching from one task/project to another? ;

• Your productivity (Increase/Decrease)? ;
• Your code quality (Increase/Decrease)? ;
• Your happiness/stress levels (Increase/Decrease)? ;
• Which are the benefits/negative aspects you see in multitask-
ing? ;

• What are typical resume strategies after returning to a previous
task/project? ;

• How does the length of the switch affect your productivity/code
quality? Increase project success? Solve more issues? Feel more
productive? Contribute more code overall? Review more pull
requests?

The developers are split into two geographically distributed of-
fices in Brazil. The ten developers interviewed are all from an office
with around 40 developers allocated in different business areas
and teams. We collected their experiences and perceptions about
how multitasking impacts their work through the combination of
specific questions. We iterated through the open-ended responses
using grounded theory methods [6], to categorize them and iden-
tify themes. In the process of coding, we separated the data and
conceptualized for data analysis, seeking to define and identify the
relationship between them. The interviewed participants reported
development experience was 9.2 years on average (min 3; max 15).
They were 29.8 years old on average (min 23; max 35).

3.4 Regression Analysis
The variability in outputs produced (i.e., FileTouches) per unit time,
our productivity proxy, was modeled as dependent on control mea-
sures and the three dimensions of multitasking: projects per day,
weekly focus, and day-to-day focus (as in the original study). For

CHASE 2020, May 24, 2020, Seoul, South Korea Kohl and Vasilescu, et al.

Table 1: OSS versus Industry

Statistic Mean St. Dev. Min Median Max
GH GL GH GL GH GL GH GL GH GL

GlobalTime 1,142.76 1489.72 74.24 17.95 991 1461.00 1,12 1490.00 1.26 1524.00
UserTime 308.05 23.53 194.12 17.01 1 1.00 271 20 2,31 63.00
Projects 2.57 2.41 0.98 0.81 2.00 2.00 2.00 2.00 9 9
DaysActive 3.98 3.08 1.63 1.24 1 1.00 4 3.00 7 7.00
Languages 3.19 2.26 1.43 1.04 1 1.00 3 2.00 14 7.00
Commits 23.89 14.77 30.06 15.11 2 2.00 15 10.00 943 345.00
FileTouches 88.56 10136.67 174.31 50645.56 2 3.00 39 862.00 2,727 1036429.00
LOCAdded 4.151.36 - 15,691.15 - 1 - 635 - 265,702 -
FilesAdded - 7036.79 - 37136.06 - 2.00 - 544.00 - 807232.00
LOCDeleted 2,282.19 - 9,217.39 - 0 - 247 - 148,977 -
FilesDeleted - 3099.87 - 26859.33 - 0.00 - 148.00 - 945503.00
AvgProjectsPerDay 1.44 1.49 0.48 0.47 1 1.00 1.33 1.40 6.00 6.00
SFocus 0.92 0.94 0.44 0.36 0.02 0.09 0.92 0.92 3.01 2.81
SLanguages 0.82 0.49 0.52 0.51 0.00 0.00 0.84 0.31 2.92 2.27
SSwitch 0.64 0.52 0.53 0.50 0.00 0.00 0.69 0.59 2.83 2.95

GH (GitHub): Summary statistics for week-level data (78,552 rows; 1,193 developers; outliers removed)
GL (GitLab): Summary statistics for week-level data (11,987 rows; 1,213 developers; outliers removed)

each developer, the data consists of measurements of the differ-
ent variables across multiple multitasking weeks (only weeks with
Projects > 1 were modeled). To perform the analysis, we first re-
moved outliers. To capture developer-to-developer variability in
the response (FileTouches), (e.g., some developers being naturally
more productive than others), rather than assessing the contribu-
tions of specific developers, we fit a linear mixed-effects model
with a random-effects term for the developer. All other variables
were modeled as fixed effects. The linear mixed-effects models
were used, as implemented in the functions lmer and lmer.test
in R. Coefficients are considered important if they were statisti-
cally significant (p < 0.05). Their effect sizes are obtained from
ANOVA analyses. We evaluate our model’s fit using a marginal (R2m)
and a conditional (R2c) coefficient of determination for generalized
mixed-effects models, as implemented in the MuMIn package in R:
R2m describes the proportion of variance explained by the fixed
effects alone; R2c describes the proportion of variance explained by
the fixed and random effects together. Table 1 presents summary
statistics for our filtered data set compared to the statistics of the
original study and, the results of the regression and comparison
with the original research are shown in Table 2.

4 RESULTS
In this section, we present the results and the answers to our re-
search questions.

4.1 RQ1: What are the trends of, reasons for,
and effects of multitasking and focus
switching on developer productivity in
GitLab?

4.1.1 Amount of Multitasking. Do developers multitask? To un-
derstand if developers multitask, we examined developers’ commit
activity and also asked interviewed participants to report the num-
ber of tasks/projects they contribute to on an average day and week.
From the repository analysis, we found that multitasking across

projects over a week is not uncommon: developers contributed to
multiple projects in 22.37% of the developer-weeks in our dataset
(or 3,279 out of 14,655), while OSS developers contribute in 37%
of the weeks. Industry developers work on average, 2.41 projects
per week; OSS developers work an average of 2.57 projects per
week. When we compare the daily multitasking results, we have
similar behavior: while industry developers contribute to 1.49 on
AvдProjectsPerDay (min 1; max 6), OSS developers contribute to
1.44 (min 1; max 6).

Does within-day multitasking scale with the number of
projects perweek? In the original study, it was investigatedwhether
contributing to more projects each week is also associated with
contributing to more projects daily (therefore with more within-day
focus switches), as one would expect. Our findings show that the
industry developers do less context switches with a similar number of
projects per week and per day that OSS developers

4.1.2 Reasons for Multitasking. When interviewing the industry
developers, we investigated reasons for working in multiples tasks
or projects during the working day. Some of the reasons mentioned
were support questions from other teams and issues from produc-
tion environments that require the developers to stop what they are
doing to understand the problem and to solve it. From the original
study, developers mentioned interdependencies, personal interest,
and social relationships. Also, typical responses were that they are
an end-user of the software tool and want to fix bugs impacting it.

The dynamism of the work environment, multidisciplinary and
social interaction were also mentioned as reasons to change focus:
developers want to be part of different conversations, talks, and
participate in meetings that are not directly linked to the projects
they are currently allocated. One developer said: "You cannot sit at
your desk the entire time, you need to talk to other people to have
your work done". From the original study, developers stated inter-
dependencies, personal interest, and social relationships as strong
reasons for contributing to multiple projects. The need to change

Multitasking Across Industry Projects:
A Replication Study CHASE 2020, May 24, 2020, Seoul, South Korea

the focus, for the sake of working on something different, was also
mentioned in the original study.

There are also mentions to focus missing, anxiety, and procras-
tination. A developer mentioned: "When you do not want to work
and do not want to really solve something, you begin many tasks and
do not finish anything."

4.1.3 Productivity Effects. Ismultitasking associatedwithmore
outputs produced per unit time? In the original study, as a pre-
liminary quantitative analysis, the authors found that more focus
switches are associated with higher LOCAdded . In this replication,
we turn to the multiple regression analysis, and from Table 2, we
can see the effects of the independent and control variables for the
multitasking productivity model; the response is loд(FileTouches).
Stars indicate the statistical significance. We can say that focus-
ing more (on fewer projects) and working more one day to the
higher productivity, but there is no effect for higher multitasking
(AvдProjectsPerDay). We note the interaction between Projects
and SSwitch : increasing the weekly total number of projects is as-
sociated with increases in outputs produced when developers do
not follow too repetitive day-to-day patterns. This suggests that
taking on many prevent boredom and be beneficial.

4.1.4 Perceived Impacts of Focus Switching. The repository analysis
is limited, so the interviews help to understand other impacts.
Positive Impacts. When talking about productivity, developers
mentioned that small context change does not impact and does not
disturb. For example: To run a script that it will take 15 seconds.
During this time, developers mentioned that they could take a
look at some other thing. These small changes of context do not
impact too much, and it does not disconnect them of the previous
task. However, three or more minutes would be to much time. A
developer said:

"I did not solve both problems, and I feel that I left the first one
behind.".

In majority, developers said that it does not increase or decrease
the time to delivery, but it delays. A lot of time is needed to rebuild
the previous context, and something can be missed. However, mul-
titasking can also make it possible to finish many little tasks at the
same time. Or, it can block another task that needs more time to be
completed. Most of the interviewed developers said that the code
quality is not impacted by multitasking.
Negative Impacts. A single experienced developer said that mul-
titasking is always negative. Two, believe that their productivity
decreases. Others said that it is worst for coding tasks or when it
takes to much time to come back to the previous task (as mentioned
previously).When asked about how does the length of the switch
affects productivity and code quality, most of the developers said
that it is proportional to how much context is being switched: as
bigger the context and bigger the interruption, it is worst to come
back. Some comments were:

"We deliver more from the different subject but less from each one."
"It breaks the flow of work, I cannot focus on only one task. It

impacts my intellectual work and my line of sight."
About code quality, only one thinks that it decreases (the most

junior developer interviewed). One developer said that it is hard
to solve hard problems with too many interruptions. Developers

surveyed in the original study believe that switching context can
drag productivity and introduce more bugs.
Happiness versus Stress Levels.We asked developers howmuch
their happiness and stress levels are affected by multitasking, a
question that was not in the original study. In general, developers
think that happiness is impacted in the medium to long term. If
multitasking frequently happens, daily, for example, they begin to
feel not productive anymore, and it affects happiness:

"Happiness decrease. I feel tired at the end of the day."
"The days I do not use a time management technique, I feel tired,

and I have a feeling that I did not reach my goal."
All developers said that stress levels increase at some point and,

it becomes frustrating and impacts the process and personal orga-
nization. However, a developer mentioned that he uses stress and a
high number of tasks to motivate himself:

"In the worst case, the stress level increase. Happiness can vary
greatly. Even in the worst case, when you can solve everything, the
high-stress level becomes happiness. I sabotage myself to have more
tasks to be happier. I use this as a positive mental model, but maybe
this is not so good."

4.2 RQ2: Are there limits on multitasking (and
what are they) before productivity is
impacted?

4.2.1 Quantitative Analysis. Table 2 yields interesting two-way
interactions. The model of the original study fits the replication
study data acceptably if we compare the R2m values directly. How-
ever, it is important to consider the following: 1) the original model
used more data 78,000 rows compared to only 3,000 rows of the
replication - the more the volume the data we have, the more effects
you can detect (and more coefficients will be statistically significant
in the model); 2) the original model used LOCAdded/week as the
outcome variable, compared to FileTouches/week in the replication,
so it might be the case that LOC models fit the data better than
FileTouches, even if the two are highly correlated.

The signs of the main coefficients (AvдProjectsPerDay, SFocus ,
SSwitch) are all similar between the two models (original and repli-
cation) except for AvдProjectsPerDay which has no statistically
significant effect now. So, we can say that focusing more (on fewer
projects) and working more repetitively from one day to the next
is associated with higher productivity, but there is no effect for
higher multitasking (AvдProjectsPerDay). We can also note the in-
teraction between Projects and SSwitch : increasing the weekly total
number of projects is associated with increases in outputs produced
when developers do not follow too repetitive day-to-day patterns.
It suggests that taking on many projects can prevent boredom and
be beneficial; however, if switching between them becomes too
repetitive, productivity decreases.

4.2.2 Developer Perceptions on Limits. When asked about percep-
tion on limits, developers mentioned that it is proportional to how
much context is being switched: as bigger the context and bigger
the interruption, it is worst to come back. Also, they perceive that
limits were crossed when stress scales, as mentioned, for example,
by a developer:

CHASE 2020, May 24, 2020, Seoul, South Korea Kohl and Vasilescu, et al.

Table 2: Multitasking productivity model. GH (GitHub Data, Original Study): The response is log(LOCAdded) per week. R2m ==
0.35.R2c = 0.55. GL (GitLab Data, Replication Study): The response is log(FileTouches) per week. R2m = 0.22. R2c = 0.37.

GH GL

Coeffs (Errors) Sum Sq. Coeffs (Errors) Sum Sq.

(Intercept) 0.069 (0.012)∗∗∗ − −0.039 (0.030) −

GlobalTime −0.037 (0.005)∗∗∗ 15.71∗∗∗ −0.010 (0.020) 0.16
Projects 0.263 (0.006)∗∗∗ 2566.87∗∗∗ 0.217 (0.038)∗∗∗ 20.07∗∗∗
Languages 0.549 (0.004)∗∗∗ 11505.20∗∗∗ 0.278 (0.023)∗∗∗ 94.12∗∗∗
SFocus −0.300 (0.004)∗∗∗ 2757.75∗∗∗ −0.189 (0.025)∗∗∗ 34.53∗∗∗
SLanguage −0.231 (0.003)∗∗∗ 2354.39∗∗∗ −0.423 (0.021)∗∗∗ 244.35∗∗∗
AvgProjectsPerDay 0.046 (0.004)∗∗∗ 215.29∗∗∗ 0.022 (0.021) 0.67
SSwitch 0.225 (0.004)∗∗∗ 2255.09∗∗∗ 0.206 (0.019)∗∗∗ 72.60∗∗∗
Projects:SFocus 0.032 (0.003)∗∗∗ 0.16∗∗∗ 0.043 (0.016)∗∗ 4.40∗∗
Languages:SLanguage −0.045 (0.002)∗∗∗ 345.961∗∗∗ 0.014 (0.015) 0.57
Projects:SLanguage −0.021 (0.003)∗∗∗ 68.66∗∗∗ −0.013 (0.018) 0.30
Projects:AvgProjectsPerDay −0.024 (0.003)∗∗∗ 128.00∗∗∗ −0.022 (0.015) 1.38
SLanguage:AvgProjectsPerDay 0.026 (0.003)∗∗∗ 59.86∗∗∗ 0.007 (0.018) 0.09
Projects:SSwitch −0.104 (0.003)∗∗∗ 404.80∗∗∗ −0.081 (0.017)∗∗∗ 14.62∗∗∗
AvgProjectsPerDay:SSwitch 0.058 (0.003)∗∗∗ 203.12∗∗∗ 0.019 (0.017) 0.81
SLanguage:SSwitch −0.029 (0.003)∗∗∗ 35.99∗∗∗ 0.015 (0.017) 0.47

GH: AIC = 171919; BIC = 172105; LogLik = -85939 ; Num. obs. = 78552; Num. groups: fUserID = 1193
GL: AIC = 8198; BIC = 8320; LogLik = -4079 ; Num. obs. = 3269; Num. groups: fUserID = 372
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

"You are giving support to an issue, so another problem appears
and then some bureaucracy, and on, and on."

When the work becomes boring (the same kind of task regularly),
they reported that multitasking becomes a way to deal with that.

4.3 Insights From Questions of the Interview
Additionally to the original research questions, the interview brought
to the table some others qualitative insights we share in this Section.

We asked to the industry developers which kind of switches
could be avoided or rescheduled. Some of the answers were: Change
of priorities that come from external sources; reducing support calls
by introducing better diagnosis tools for production incidents; dis-
tractions from non silent open environments; to protect developers
from external interruptions (for example, better filtering coming
from product owners and scrum masters)

We also asked the typical triggers for switching between tasks,
and change of business rules; lack of knowledge in a specific subject;
and communication issues were some of the answers.

Developers answered about their typical resume strategies for
returning to a previous task. Some do not have strategy at all, just
let the source code opened where the developer was working before.
Other answers were: to let code non compiling where the developer
was working on; code annotations; to do lists; Git features as Git
Stash to come back to previous state; check the differences between
Git and the local state of the code.

5 DISCUSSION ACROSS STUDIES
Through this section, we summarise and compare the main re-
sults from both studies. OSS developers use to multitask in more
developer weeks than industry developers (37% versus 22.37%);

however, the SFocus (diversity on focus switch) are similar 0.92 to
OSS developers and, 0.94 to industry developers.

There are some common reasons why OSS and industry devel-
opers do multitasking and work in multiple projects: dependencies,
personal interests, and social relationships (to gain reputation in
the OSS community or the company they work on, for the industry).
Developers working for industry mentioned an additional reason
for multitasking: bug fixing (mainly in production environments).
From human and social aspects, industry developers said that mul-
titasking sometimes is generated by focus missing, anxiety, and
procrastination.

There were also comments about the perceived impacts of focus
switching. OSS developers mention as positive the possibility to
contribute with multiple projects increases, the chances of each
project succeed. Also, they said that working in multiple projects
makes it possible to resolve more issues. For industry developers,
short periods of focus switching do not impact or disturb their
work. Also, they reported that multitasking makes it possible to
finish many little tasks at the same time. As negative impacts, OSS
developers do not believe that multitasking is positive to code
quality as well as context switching. The industry developers also
believe that productivity decreases proportionally to how much
context is being switched; however, only a few mentioned that code
quality decreases. As more significant the context being switched
and the interruption, harder is to come back. A recent study from
Duncan et al. [4] says that there is evidence to support the idea
that following an interruption, people fail to remember what they
were doing in a task before being interrupted. Also, there is a link
between how quickly a task is resumed and the likelihood that an
error is made. The same study says that interruption researchers

Multitasking Across Industry Projects:
A Replication Study CHASE 2020, May 24, 2020, Seoul, South Korea

have generally considered a longer resumption lag to be a bad thing
— reflecting time needless wasted following an interruption.

An analysis comparing happiness versus stress level, not present
in the original study, shows that happiness of industry developers
is impacted in medium to long term, and they do not feel productive
anymore. Stress levels increase at some point, leaving developers
frustrated.

OSS and industry developers have different perceptions of multi-
tasking limits. While OSS Developers want to increase the number
of projects they contribute, industry developers use multitasking
to deal with tedious tasks.

6 RESEARCH AGENDA
The results of this replication study brought emerging significant
insights on multitasking and focus switching across projects when
comparing OSS developers and developers that dedicate most of
their time to industry; however, we want to perform additional
analysis through the industrial data and collect additional insights
than the ones obtained in the original study. We understand that
we will be opening some interesting avenues for future research.

Further investigation on different companies. This study
compares the multitasking work of OSS developers in GitHub with
industry developers from one company only. It would be essen-
tial to gather the repository information of other companies (that
would like to share their data anonymously) to have different sam-
ples and better understand the impact of the cultural environment
on the results. It would help to build a solid base of knowledge,
reducing uncertainty about theories, methods, tools, etc., helping
to strengthen the evidence.

Further investigation on different genders. The multitask-
ing behavior impacts differently when considering different gen-
ders? From the data gathered from both OSS and industry, it is
possible to infer gender using different algorithms available. Future
work can investigate if multitask is different for men and women
and consider a different kind of qualitative research to support the
findings.

Further investigation on team’s self-evaluation. Another
point to be evaluated is how much multitasking impacts the self-
evaluation of the industry development teams. The company ana-
lyzed runs, for every development cycle (sprints of different sizes), a
survey built over five qualitative variables: Goals and Planning, Pro-
ductivity and Delivery, Technical assumptions and Quality, Process
and Ceremonies, and Collaboration across Teams. The objective is
to be a tool for continuous improvement, so the survey is usually
answered after the retrospective of the development cycle when
the teams discuss how it was. There is a possibility to include in
the discussions of the teams, points about focus changing, and the
impact on the work.

7 THREATS TO VALIDITY
The assessment of Threats to Validity (TTVs) is critical to secure
the quality of empirical studies in Software Engineering [14]. Our
threats to validity are mentioned below, based on categories of
threats mentioned by Wohlin et al. [12]

• Reliability: This aspect is concerned with to what extent
the data and the analysis are dependent on the specific re-
searchers. We had a few numbers of interviews, and they are
all performed by only one person. Two risks are identified
here: unclear coding of collected data and a possible risk of
researcher bias.

• External validity: The concern of this aspect is whether
the results can be generalized. In the original paper, the
projects extracted were based on data from GitHub, which
limited the generalizability to that context. In this replication
work, we enlarged the sample and enriched the discussion
about multitasking using data from a technology company.
However, we analyzed data of only one company, and we
had a few interviews, but we see that as a step forward to
more generability.

8 CONCLUSIONS
Developers mentioned that small context change did not impact
and gave a number: three minutes. More than that brings a feeling
of left the previous task behind. It is proportional to how much
context is being switched: as bigger the context and bigger the
interruption, it is worst to come back. Hard problems become harder
to solve when interruptions are in place. Borst et al. [3] have shown
that the disruptiveness of interruptions is for a significant part
determined by three factors: interruption duration, interrupting-
task complexity, and moment of interruption corroborating with
the findings of both studies.

We also found out that industry developers multitask as much
as OSS developers. There are commons reasons for both groups to
multitask: dependencies, personal interests, and social relationships.
Dependencies are commonly related to code they need from other
teams or developers prior synchronize work to continue (e.g., a
front end development task that depends on an API developed by
others).

Personal interests are related to technologies they want to learn,
problems that require knowledge they do not have. Social relation-
ships are related to how well they go across the company, collabo-
rate with other teams, projects, and their reputation coming from
that.

The need to change the focus, for the sake of working on some-
thing different, was also mentioned by both groups. Industry devel-
opers also mentioned focus missing, anxiety, and procrastination
as reasons for multitaasking.

ACKNOWLEDGMENT
This project is partially funded by FAPERGS, project 17/2551-0001/205-
4.

REFERENCES
[1] Rachel F. Adler and Raquel Benbunan-Fich. 2012. Juggling on a High Wire:

Multitasking Effects on Performance. Int. J. Hum.-Comput. Stud. 70, 2 (Feb. 2012),
156–168. https://doi.org/10.1016/j.ijhcs.2011.10.003

[2] Raquel Benbunan-Fich. 2011. An Entropy Index for Multitasking Behavior. In
ICIS.

[3] Jelmer P. Borst, Niels A. Taatgen, and Hedderik van Rijn. 2015. What Makes
Interruptions Disruptive?: A Process-Model Account of the Effects of the Problem
State Bottleneck on Task Interruption and Resumption (CHI ’15). ACM, New
York, NY, USA, 2971–2980. https://doi.org/10.1145/2702123.2702156

https://doi.org/10.1016/j.ijhcs.2011.10.003
https://doi.org/10.1145/2702123.2702156

CHASE 2020, May 24, 2020, Seoul, South Korea Kohl and Vasilescu, et al.

[4] Duncan P. Brumby, Christian P. Janssen, and Gloria Mark. 2019. How Do Inter-
ruptions Affect Productivity? Apress, Berkeley, CA, 85–107. https://doi.org/10.
1007/978-1-4842-4221-6_9

[5] Erik Brynjolfsson. [n.d.]. Information , Technology and Information Worker
Productivity. ([n. d.]), 0–39.

[6] Juliet M. Corbin and Anselm C. Strauss. 2016. Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory. https://doi.org/
10.4135/9781412963909

[7] Omar S. Gómez, Natalia Juristo, and Sira Vegas. 2014. Understanding replication
of experiments in software engineering: A classification. Information and Software
Technology 56, 8 (2014), 1033–1048. https://doi.org/10.1016/j.infsof.2014.04.004

[8] Victor M. González and Gloria Mark. 2005. Managing Currents of Work: Multi-
tasking Among Multiple Collaborations. In ECSCW 2005, Hans Gellersen, Kjeld
Schmidt, Michel Beaudouin-Lafon, and Wendy Mackay (Eds.). Springer Nether-
lands, Dordrecht, 143–162.

[9] C. Rosen. 2008. The Myth of Multitasking. The New Atlantis 20(Spring) (2008),
105–110.

[10] Herbert Rubin and Irene Rubin. [n.d.]. Qualitative Interviewing (2nd ed.): The
Art of Hearing Data. https://doi.org/10.4135/9781452226651

[11] Bogdan Vasilescu, Kelly Blincoe, Qi Xuan, Casey Casalnuovo, Daniela Damian,
Premkumar Devanbu, and Vladimir Filkov. 2016. The Sky Is Not the Limit: Multi-
tasking Across GitHub Projects. Proceedings of the 38th International Conference
on Software Engineering - ICSE ’16 (2016), 994–1005. https://doi.org/10.1145/
2884781.2884875

[12] A.Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén. 2012. Ex-
perimentation in Software Engineering (1 ed.). Springer-Verlag Berlin Heidelberg.
236 pages. https://doi.org/10.1007/978-3-642-29044-2

[13] Qi Xuan, Aaron Okano, Premkumar Devanbu, and Vladimir Filkov. 2014. Focus-
shifting Patterns of OSS Developers and Their Congruence with Call Graphs
(FSE 2014). ACM, New York, NY, USA, 401–412. https://doi.org/10.1145/2635868.
2635914

[14] X. Zhou, Y. Jin, H. Zhang, S. Li, and X. Huang. 2016. A Map of Threats to Validity
of Systematic Literature Reviews in Software Engineering. In 2016 23rd Asia-
Pacific Software Engineering Conference (APSEC). 153–160. https://doi.org/10.
1109/APSEC.2016.031

https://doi.org/10.1007/978-1-4842-4221-6_9
https://doi.org/10.1007/978-1-4842-4221-6_9
https://doi.org/10.4135/9781412963909
https://doi.org/10.4135/9781412963909
https://doi.org/10.1016/j.infsof.2014.04.004
https://doi.org/10.4135/9781452226651
https://doi.org/10.1145/2884781.2884875
https://doi.org/10.1145/2884781.2884875
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1145/2635868.2635914
https://doi.org/10.1145/2635868.2635914
https://doi.org/10.1109/APSEC.2016.031
https://doi.org/10.1109/APSEC.2016.031

	Abstract
	1 Introduction
	2 Information About the Original Study
	2.1 Dataset
	2.2 Multi-project Multitasking Productivity

	3 Information About the Replication
	3.1 Research Questions
	3.2 Dataset
	3.3 Semi-Structured Interviews
	3.4 Regression Analysis

	4 Results
	4.1 RQ1: What are the trends of, reasons for, and effects of multitasking and focus switching on developer productivity in GitLab?
	4.2 RQ2: Are there limits on multitasking (and what are they) before productivity is impacted?
	4.3 Insights From Questions of the Interview

	5 Discussion Across Studies
	6 Research Agenda
	7 Threats to validity
	8 Conclusions
	References

